

Urban Arboviral Emergence: Chikungunya, Zika, Dengue & Yellow Fever

Scott C. Weaver

Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology,

University of Texas Medical Branch, Galveston

African arboviruses with history of urban emergence via *Aedes* (*Stegomyia*) transmission and human amplification: **yellow fever**, **chikungunya**, **Zika**

Urban Aedes Arbovirus Vectors A. albopictus A. aegypti

Originated in sub-Saharan Africa, spread throughout the tropics centuries ago after domestication

Originated in Asia, spread to the Americas, Africa and Europe beginning in 1985; lesser level of domestication

Predicted extension of distributions due to climate change

Kamal et al., 2018

Why is Aedes aegypti the principal vector of these urban arboviruses?

Highly evolved over hundreds-tothousands of years in Africa to live in **close association with people**:

- •Feeds almost exclusively on humans
- •Takes multiple bloodmeals during a short time period
- •Exploits artificial water containers as larval habitats
- •Adult females enter houses and remain there
- •"Skip oviposition"
- •Exceptionally difficult to control using traditional methods

Chikungunya Virus

- Attack rates approach 50% in many regions, high apparent:inapparent ratio (<u>unlike</u> yellow fever, dengue, Zika)
- Fatal cases (ca. 0.1%) occur mainly in the elderly, perinatal and congenital infections (peripartum transmission), persons with underlying medical conditions
- Arthralgia is highly debilitating and often chronic, resulting in severe economic impacts
- DALY estimates can exceed 2/3 of the total population morbidity during outbreaks

History of Chikungunya Virus Emergence and Spread

CHIKV Evolution

2% nucleotide sequence divergence

Competition Fitness Assay

Advantages:

H₀: mutant:wt final ratio/initial ratio=1 (i.e. no effect of mutant on fitness)

The N501Y spike substitution enhances SARS-CoV-2 infection and transmission

https://doi.org/10.1038/s41586-021-04245-0 Received: 9 March 2021 Yang Liu¹²⁴, Jianying Liu^{23,46}, Kenneth S. Plante^{33,46}, Jessica A. Plante^{23,4}, Xuping Xie¹, Xianwen Zhang¹, Zhiqiang Ku⁸, Zhiqiang An⁵, Jionna Scharto^{3,4}, Graig Schindewi² Steven G. Widen¹, Vineet D. Menachery^{2,4}, Pei-Yong Shi^{123,8} & Scott C. Weaver^{2,3481}

Accepted: 12 November 2021

A. albopictus-adaptive CHIKV Darwinian Evolution

Lineage	First appearance	Protein	Substitution	Fitness for <i>A.</i> albopictus infection	Fitness for <i>A. aegypti</i> infection
IOL	2005	E1	A226V	40-fold increase	Slight decrease
IOL (SL1)	2007	E2	K252Q	8-fold increase	No effect
IOL (SL2 partial)	2008	E2	K233E	6-fold increase	No effect
IOL (SL3B)	2008	E2/E3	R198Q/S18F (synergistic)	16-fold increase	No effect
IOL (SL4)	2009	E2	L210Q	5-fold increase	No effect
Asian	Never	E1	A226V	No effect	Not done
Asian	Never	E2	K252Q	Little or no effect	Little or no effect
Asian	Never	E2	K233E	Little or no effect	Little or no effect
Asian	Never	E2/E3	R198Q/S18F (synergistic)	Little or no effect	Little or no effect
Asian	Never	E2	L210Q	Slight decrease	Not done

- 1. None of these mutations has a major effect on infection of *A. aegypti*.
- 2. All affect initial infection of the *A. albopitus* midgut
- 3. Structural studies allow us to predict additional adaptive mutations, confirmed experimentally

Tsetsarkin KA, et al. Nat Commun. 2014. 5:4084; Chen R, et al. mBio. 2021

Human Infection Profile for CHIKV

Stochastic nature of arboviral emergence due to founder effects:

Genetic drift: Random changes in the genetic make-up of a population due to chance, random sampling. Drift can dominate the evolution of a virus when population sizes remain small, reducing the efficiency of selection and genetic diversity.

Populations bottlenecks can result in fitness declines or epistatic constraints on adaptive evolution due to genetic drift

Arboviruses and Population Bottlenecks

Amino acid substitutions that interact <u>epistatically</u> with *A. albopictus*-adaptive mutations

CHIKV Lineage	Year of first appearance	Amino acid Protein substitution	Approximate infectivity increase or epistatic effect	Epistatic interaction
Asian	1958	E1 A98T All Asian and Asian/American strains have T	Completely prevents penetrance for <i>A.</i> <i>albopictus</i> infection	E1-226V
ECSA	1953	E2 I211T ECSA/Brazilian strain has I	Enables penetrance for <i>A.</i> <i>albopictus</i> infection	E1-226V

Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S. Epistatic roles of E2 glycopr mutations in adaption of chikungunya virus to *Aedes albopictus* and *Ae. aegypti* mosquitoes. PLoS One 4:e6835.

Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC. Chikungunya virus emergence constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A. 2011. 108:7872-

Competition of E1-A226V Against WT in Brazil-ECSA and Asian-American Backbones

Association Between ZIKV and Microcephaly, Guillain–Barré syndrome

- ZIKV infection first associated in French Polynesia with a ca. 2-10-fold increase in Guillain–Barré syndrome
- Microcephaly first detected in northeastern Brazil in 2015 based on a 100-200-fold rise in incidence coincident with the ZIKV outbreak
- A wide range of congenital defects now termed **Congenital Zika Syndrome**

Historic Spread of Zika Virus

Virus detection/confirmed human case

Haddow AD, et al. PLoS Negl Trop Dis. 2012. 6:e1477. Weaver SC, et al. Antiviral Res. 2016. 130:69-80.

Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage

Andrew D. Haddow¹*, Amy J. Schuh¹, Chadwick Y. Yasuda², Matthew R. Kasper^{2¤}, Vireak Heang², Rekol Huy³, Hilda Guzman¹, Robert B. Tesh¹, Scott C. Weaver¹

1 Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America, 2 United States Naval Medical Research Unit, No. 2, Phnom Penh, Cambodia, 3 National Dengue Control Program, Phnom Penh, Cambodia

ZIKV Adaptive Evolution for Urban Transmission?

LETTER

doi:10.1038/nature22365

Evolutionary enhancement of Zika virus infectivity in *Aedes aegypti* mosquitoes

Yang Liu^{1,2,3}*, Jianying Liu^{1,3}*, Senyan Du¹*, Chao Shan⁴*, Kaixiao Nie¹, Rudian Zhang^{1,2}, Xiao-Feng Li⁵, Renli Zhang³, Tao Wang^{3,6}, Cheng-Feng Qin⁵, Penghua Wang⁷, Pei-Yong Shi⁴ & Gong Cheng^{1,3}

Regla-Nava JA, et al. Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Rep. 2022. 39:110655.

- NS1-188V substitution associated with more efficient infection of *A. aegypti*
- NS2B-I39V or -I39T mutation increases ZIKV replication in mosquitoes

Revertant ZIKV Amino Acid Substitutions

Revised ZIKV Adaptation Hypothesis: Fitness Losses Due to Founder Effects Followed by Partial Fitness Restoration

Effects of 4 Initial Mutations on African ZIKV Fitness in *A. aegypti* After Oral Infection

Effects of Individual Initial Mutations on African ZIKV Fitness for Mosquito Transmission

Effects of 4 Initial Mutations on African ZIKV Fitness in Primary Human Cells Believed to Seed Viremia

Effects of 4 Reversion Mutations on Asian ZIKV Fitness in *A. aegypti* After Oral Infection

Summary of Fitness Effects of 4 revertant ZIKV mutations

4 initial mutations:

- combination of 4 reduces infection by an African strain of *A. aegypti* saliva and human target cells for ZIKV viremia and amplification.
- Each individual mutation reduces infection by an African strain of at least one of these transmission targets.

4 reversion mutations

• 3 of the 4 mutations independently enhance infection by an Asian ZIKV strain for at least one transmission phenotype.

Arboviruses without a recent history of urban emergence via *Aedes aegypti* transmission in some locations: yellow fever

Recent, Major Outbreaks of Yellow Fever: Angola and Brazil

A Seminal Question in Arbovirology:

Despite the abundance of the principal urban vector, *Aedes aegypti*, susceptible humans, and opportunities for introduction, why is there no YFV transmission at all in Asia and no urban transmission in South America since 1942? Hypothesis: Dengue immunity present for many decades in Asia and since the 1980s in the Americas, but less prevalent in Africam cross-protects against YFV viremia, suppressing human amplification potential; ZIKV present in Asia for decades and in Brazil since 2013 also cross-protects

- ZIKV Dakar 41525 (n=3)

Serum: PRNT, ELISA

Blood:

-Complete Blood Count Serum:

Serum:

-Viremia

-Liver enzymes (ALT, AST)

DENV-Neutralizing Antibody Titers

- DENV-seronegative

- DENV2 FOI407-Initiale
- DENV2 NGC-immune

Group	Primary virus exposure	# of animals	# of animals with NAb (FRNT)	# of animals seronegative
Flavivirus-naïve	None	3	0	3
DENV2 P8	DENV2 P8 1407	10	8	2
DENV2 NGC	DENV2 NGC	3	3	0

ZIKV-Neutralizing Antibody Titers

Group	Primary virus exposure	# of animals	# of animals with NAb (FRNT)	# of animals seronegative
Flavivirus-naïve	None	3	0	0
DENV2 P8	DENV2 P8 1407	10	8	2
DENV2 NGC	DENV2 NGC	3	3	0
ZIKV PR	ZIKV PRVABC59	4	3	1
ZIKV Dakar	ZIKV Dakar 41525	3	3	0

YFV Viremia in DENV2-exposed animals

YFV Viremia

In comparison to flavivirusnaïve and DENV2seronegative animals,

- DENV2 P8-immune animals had much lower viremia
- DENV2 NGC-immune animals had slightly lower viremia
- All DENV2-exposed animals had a shorter duration of viremia

YFV Viremia in ZIKV-exposed animals

In comparison to flavivirus-naïve animals,

- ZIKV PR- and ZIKV Dakarimmune animals had much lower viremia
- All ZIKV-immune animals had a **shorter duration of viremia**
- One ZIKV-SN (by PRNT) animal succumbed to illness on Day 9
 - Did not have detectable Neutralizing Antibodies against ZIKV by PRNT
 - But, did have <u>binding</u> antibodies by ELISA
- Suggests the possibility of immune enhancement

Aedes aegypti Infections

Peak Viremia: Days 3-4

Mosquito Infection Rate 3 Days Post-Infection

Majority of infected mosquitoes belong to the flavivirus-naïve or –seronegative groups

Mosquito Infection Rate 4 Days Post-Infection

Vast majority of infected mosquitoes belong to the flavivirus-naïve or -seronegative groups

Overall, DENV and ZIKV immunity also cross protected against yellow fever disease (with one possible enhancement)

African arboviruses with history of urban emergence via *Aedes aegypti* transmission: **yellow fever**, **chikungunya, Zika**

Acknowledgements

utmb Health

Institute for Human Infections & Immunity

Konstantin Tsetsarkin, Rubing Chen, Nikos Vasilakis, Divya Mirchandani, Jessica Plante, Jianying Liu, Pei-Yong Shi

Institut Pasteur Amadou Sall, Mawlouth Diallo Johns Hopkins University Derek Cummings. Ben Althouse N. Mexico State University Kathy Hanley UT El Paso Doug Watts

Funding: NIH-NIAID R01-AI069145, R01-AI071192, R01-AI48807

Questions?

A little clean water, please!

Classic or Modern

- Are you carrying Zika or chikungunya?
- Only dengue. I detest being fashionable!

Failure of Traditional Mosquito Control to Control Dengue

- In the tropics adult female Aedes aegypti remain inside houses, limiting insecticide penetration
- Larval A. aegypti are found in low density in many artificial containers around homes, requiring entry into individual properties for inspection/control
- *A. aegypti* in many parts of the world are developing resistance to insecticides

Novel Approach for Vector Control: <u>Release</u> of <u>Insects with Dominant Lethality (RIDL)</u>

- Tetracycline repressible activator variant (tTAV): acts as a switch to control the activity of essential mosquito genes
- tTAV works only in insect cells; the non toxic protein ties up the cell's machinery so it's other genes aren't expressed and the insect dies in the larval stages
- Tetracycline binds to tTAV and disables it, allowing it to be added to laboratory larval water so that mosquitoes survive to the adult stage
- Because the tTAV gene is dominant, offspring of matings between released transgenic and wild mosquitoes die in the wild without tetracycline in their larval habitats

- Safety advantage: transgene is "suicidal"
- Potential limitations: Sustained release of mosquitos is required, may be too costly for resource-limited regions endemic to urban arboviruses

Wolbachia: Bacterial symbionts of many insects that can spread through populations through cytoplasmic incompatibility

- Infected males "sterilize" uninfected females
- When adapted to and introduced into *A. aegypti, Wolbachia* reduce their lifespan
- Wolbachia also reduce arbovirus replication and transmission

Field Trials: Australia (completed), Indonesia, Viet Nam, Brazil, Colombia

Wolbachia dengue control method

Approximate number of weeks released

Potential limitations:

- Limited dispersal of *A. aegypti* will necessitate widespread release of female mosquitoes.
- Can arboviruses evolve resistance to Wolbachia suppression?

Genetically engineering refractoriness into mosquito vectors and dissemination via gene drive mechanisms

Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, *Aedes aegypti*

Ming Li^{a,b,1}, Michelle Bui^{a,b,1}, Ting Yang^{a,b,1}, Christian S. Bowman^{a,b}, Bradley J. White^{a,b,2}, and Omar S. Akbari^{a,b,1,3}

^aDepartment of Entomology, University of California, Riverside, CA 92521; and ^bCenter for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521

Edited by Carolina Barillas-Mury, National Institutes of Health, Bethesda, MD, and approved October 23, 2017 (received for review June 27, 2017)

Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles stephensi*

Valentino M. Gantz^{a,1}, Nijole Jasinskiene^{b,1}, Olga Tatarenkova^b, Aniko Fazekas^b, Vanessa M. Macias^b, Ethan Bier^{a,2}, and Anthony A. James^{b,c,2}

^aSection of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349; ^bDepartment of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and ^cDepartment of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500

Contributed by Anthony A. James, October 26, 2015 (sent for review October 11, 2015; reviewed by Malcolm Fraser and Marcelo Jacobs-Lorena)

SANG

Lethal Mosquito Traps

- Autocidal gravid ovitrap
- Passive design, simple, inexpensive components
- 3 traps per house decreased Aedes aegypti mosquito abundance by 79% in southern Puerto Rico, reduced CHIKV infections

